‘

. AtlasScientific

Revised 7/25/16

-

coms l=/&] %
[¥] Autoscroll Carriage return » 9600 baud

COMMUNICATION =

PWR em

Arduino MEGA

www. arduino.cc

sy ANALOG IN =——————

™

5V GNDVIN o « «t o < 10 © ~

31
33
35
37
39
41
43
45
47
49
51
53

Environmental Robotics

RTD VCC PRB

20" @ ©

9 8
DIGITAL

3 2
11

10
11
=2 =2
===
aaa

e TX i
= Arduino

L

PWR SEL

www.arduino.cc

» POWER

&5V Gnd Vin 0 1

#include <Wire.h>

#define address 102

char computerdata[20];
byte received_from_computer=0;
byte serial_event=0;

byte code=0;

char RTD_data[20];

byte in_char=0;
byte i=0;

int time_=600;
float tmp_float;

void setup()
{

//enable I2C.

//default 12C ID number for EZO RTD Circuit.

//we make a 20 byte character array to hold incoming data from a pc/mac/other.
//we need to know how many characters have been received.
//a flag to signal when data has been received from the pc/mac/other.

//used to hold the I°C response code.

//we make a 20 byte character array to hold incoming data from the RTD circuit.

//used as a 1 byte buffer to store in bound bytes from the RTD Circuit.
//counter used for RTD_data array.

//used to change the delay needed depending on the command sent to the EZO Class RTD Circuit.

//float var used to hold the float value of the RTD.

//hardware initialization.

ANALOG IN
2 345

}

}

Serial.begin(9600);
Wire.begin();

void serialEvent(){
received_from_computer=Serial.readBytesUntil(13,computerdata,20);

//enable serial port.

//enable I>C port.

computerdatalreceived_from_computer]=0;

serial_event=1;

}

void loop(X{

if(serial_event){

if(computerdata[0]=="c'||computerdata[0]=="r')time_=600;

else time_=300;

Wire.beginTransmission(address);

Wire.write(computerdata);
Wire.endTransmission();

delay(time_);

Wire.requestFrom(address,20,1);

code=Wire.read();

switch (code){
case 1:
Serial.printIn("Success");
break;

case 2:
Serial.printin("Failed");
break;

case 254:
Serial.printin("Pending");
break;

case 255:
Serial.printin("No Data");

break;

}

while(Wire.available()){
in_char = Wire.read();
RTD_datalil= in_char;
i+=1;
if(in_char==0){
Wire.endTransmission();
break;
}
}

Serial.printin(ph_data);
serial_event=0;

}

Atlas-Scientific.com

//this interrupt will trigger when the data coming from
//the serial monitor(pc/mac/other) is received.

//we read the data sent from the serial monitor
//(pc/mac/other) until we see a <CR>. We also count
//how many characters have been received.

//stop the buffer from transmitting leftovers or garbage.

//the main loop.

//if the serial_event=1.

//if a command has been sent to calibrate or take a reading
//we wait 600ms so that the circuit has time to take the reading.
//if any other command has been sent we wait only 300ms.

//call the circuit by its ID number.

//transmit the command that was sent through the serial port.
//end the I2C data transmission.

//wait the correct amount of time for the circuit to complete its instruction.

//call the circuit and request 20 bytes (this is more than we need)

//the first byte is the response code, we read this separately.

//switch case based on what the response code is.
//decimal 1.
//means the command was successful.
//exits the switch case.

//decimal 2.
//means the command has failed.
//exits the switch case.

//decimal 254
//means the command has not yet been finished calculating.
//exits the switch case.

//decimal 255.
//means there is no further data to send.
//exits the switch case.

//are there bytes to receive.
//receive a byte.
//load this byte into our array.

/lincur the counter for the array element.

//if we see that we have been sent a null command.
//reset the counter i to 0.

//end the I2C data transmission.

//exit the while loop.

//print the data.
//reset the serial event flag.

//Uncomment this section if you want to take the pH value and convert it into floating point number.
//RTD_float=atof(RTD_data);

Copyright © Atlas Scientific LLC ~ All Rights Reserved

https://www.atlas-scientific.com/_files/code/ino_files/RTD_I2C.zip

