

PROYECTO Nº 4

Controlar 2 servomotores (de 0° a 180°) con un joystick

PROYECTO Nº 4: Controlar 2 servomotores (de 0º a 180º) con 1 joystick

Aprende cómo programar un circuito para controlar la posición de 2 servomotores en función de la posición de un único joystick. Recuerda que un joystick está compuesto por 2 potenciómetros, por lo que cada potenciómetro debe asociarse a cada servomotor. La posición del servomotor variará de 0º a 180º en función del movimiento del joystick, de izquierda a derecha.

NIVEL DE DIFICULTAD: Intermedio.

DURACIÓN DE LA ACTIVIDAD: 30 min.

LISTA DE MATERIALES:

- 1 Joystick
- 2 Servomotores
- 1 Placa Build&Code UNO
- 1 Placa sensor Build&Code
- 1 Cable USB USB tipo B
- Ordenador

CONEXIONES:

1. Conecta el joystick a los puertos analógicos A0 y A1 de placa sensor Build&Code. **Conexiones con el puerto analógico A0:**

-Conecta el GND al pin G.

-Conecta el Vcc al pin V.

-Conecta el VRx al pin S.

Conexiones con el puerto analógico A1:

-La VRy al pin S.

Como puedes recordar, conectamos el joystick a los puertos analógicos A0 y A1 ya que está compuesto por potenciómetros, que son sensores analógicos.

2. Conexión de los servomotores a la placa sensor Build&Code.

-Conecta el servomotor S1 al puerto digital 6. Conecta el cable marrón al pin G, el cable rojo al pin V y cable el naranja al pin S.

-Conecta el servomotor S2 al puerto digital 9. Conecta el cable marrón al pin G, el cable rojo al pin V y el cable naranja al pin S.

Conectamos los servomotores a estos puertos digitales ya que tienen una salida PWM que será la encargada de hacer girar más o menos el servomotor en función de la lectura recibida del joystick.

3. La imagen a continuación muestra cómo son las conexiones. Úsala como guía.

CÓDIGO DE PROGRAMACIÓN

Puedes realizar esta actividad utilizando el *software* Arduino y otros software de programación por bloques compatibles. A continuación, encontrarás el código de programación necesario.

Código Arduino

Realizarás un programa que estará constantemente leyendo la información de las 2 salidas del joystick, y en función de la lectura que mida del joystick, hará mover al servo a una u otra posición. Cuando sueltes el joystick, el servo volverá a la posición de origen.

Antes de comenzar, recuerda que:

- Al ser un sensor analógico, un potenciómetro hará lecturas de 0 a 1023, en función de cuánto lo hayas girado.
- Los pines digitales PWM estarán trabajando como un pin de salida, pero en vez de dar un valor alto o bajo de manera constante, éstos pueden hacer cambios muy rápidos de valores para jugar con valores medios, lo cual permite emitir distintos niveles de voltaje de salida.
- Para trabajar con servomotores, usarás la librería de Servomotor "#include", ya que facilitará mucho el poder trabajar con los servomotores.
- Un servomotor puede moverse de 0º a 180º, por lo que deberás relacionar los valores de lectura analógicos con los valores de movimiento del servo usando la instrucción "map".

Ahora, sigue estos pasos:

1. <u>Descarga el software Arduino</u> y realiza el proceso de instalación.

1.2 Configura el programa para cargar programas en la placa controladora Build&Code UNO. Encontrarás las instrucciones para hacerlo en la <u>guía de Primeros Pasos del Arm Robot</u>.

2. Abre el programa Arduino y, una vez en él, copia el siguiente programa:

```
#include <Servo.h>
int valorX = 0; // LECTURA DEL EJE X
int valorY = 0; // LECTURA DEL EJE Y
int pinJX = A0; // PIN ANALOGICO A0 DEL EJE X
int pinJY = A1; // PIN ANALOGICO A1 DEL EJE Y
Servo motor1; // DECLARAR SERVO 1
Servo motor2; // DECLARAR SERVO 2
int grados1 = 0; // GRADOS DEL SERVO 1
int grados2 = 0; // GRADOS DEL SERVO 2
void setup() {
Serial.begin(9600); // ACTIVA LA COMUNICACIÓN CON LA PLACA
BUILD&CODE UNO
motor1.attach (6); // PIN DIGITAL PWM 9 DONDE ESTÁ CONECTADO EL
SERV0 1
motor1.write (0);
motor2.attach (9); // PIN DIGITAL PWM 10 DONDE ESTÁ CONECTADO EL
SERV0 2
motor1.write (0);
}
void loop() {
valorX = analogRead (pinJX); // LECTURA DEL PUERTO ANALOG. A0 DEL
EJE X
valorY = analogRead (pinJY); // LECTURA DEL PUERTO ANALOG. A1 DEL
EJE Y
grados1 = map(valorX, 0, 1023, 0, 180);
grados2 = map(valorY, 0, 1023, 0, 180);
motor1.write (grados1); // ENVIAR LOS GRADOS AL SERVO 1
motor2.write (grados2); // ENVIAR LOS GRADOS AL SERVO 2
//Imprimimos por pantalla las variables con las que trabajamos
Serial.print (valorX); // MOSTRAR POR PANTALLA LOS VALORES DEL EJE
X DE 0 A 1023
```



```
Serial.print("\t");
Serial.print (valorY); // MOSTRAR POR PANTALLA LOS VALORES DEL EJE
Y DE 0 A 1023
Serial.print("\t");
Serial.print (grados1); // MOSTRAR POR PANTALLA LOS GRADOS DEL EJE
X DE 0 A 180
Serial.print("\t");
Serial.println(grados2); // MOSTRAR POR PANTALLA LOS GRADOS DEL EJE
Y DE 0 A 180
}
```

Haz clic en la "lupa" del programa en Arduino para observar cómo las variaciones del joystick afectan a los grados de posición de los servomotores.

Serial Monitor 👂

💿 COM23 (Arduino/Genuino Uno)

511	515	89	90
512	514	90	90
512	514	90	90
512	514	90	90
512	514	90	90
511	514	89	90
512	514	90	90
510	512	89	90
512	514	90	90
512	514	90	90
512	514	90	90

Código para software de programación por bloques compatible

- 1. <u>Descarga el *software*</u> y realiza el proceso de instalación.
 - 1.2 Ejecuta el *software* de programación por bloques compatible.
 - 1.3 Configura el programa para cargar programas en la placa controladora Build&Code UNO. Encontrarás las instrucciones para hacerlo en la <u>guía de Primeros Pasos del Arm Robot</u>.
- 2. Abre el programa y, una vez en él, copia el siguiente código:

3. Para variar el ángulo del servomotor con el movimiento del joystick harás la siguiente operación matemática:

Valor de servomotor = (Valor del joystick * valor más grande servomotor) / valor más grande del joystick

Servomotor S1 = (lectura del puerto analógico A0 * 180)/1023

El servomotor funciona con valores de 0 a 180 y el joystick da valores de 0 a 1023. Tienes que relacionar los valores del joystick para poder mover el servomotor.

Para activar el programa debes de configurar la placa controladora de una forma distinta. Sigue los pasos a continuación:

- 1. Dirígete al apartado Placas y selecciona Arduino UNO.
- 2. Ve al apartado Conectar y selecciona Puerto Serie. Luego, selecciona el puerto COM al cual está conectada la placa controladora Build&Code UNO.
- 3. En el mismo apartado Conectar, selecciona Actualizar Firmware y espera que se haya finalizado la carga del programa de comunicación.

Una vez realizado el programa, clica en la bandera verde, mueve el joystick y observa los movimientos que hace el Arm robot.

RESULTADO DEL EJERCICIO

El programa estará leyendo constantemente la información de las 2 salidas del joystick y, en función de la lectura que mida del joystick, hará mover los servomotores hacia una u otra posición, de 0º a 180º (el tope de movimiento). Cuando sueltes el joystick, los servomotores volverán a la posición inicial o de reposo, que será 90º.