. AtlasScientific

Environmental Robotics

Raspberry Pi I?C Sample Code

\ RASPBERRY PI

If you have not set up I?°C communications on your Raspberry Pi,
you will need to do this first (this only needs to be done once).

Section 1

Get I2C tools
e Download the I°C-tools utility by entering the following command in the terminal

sudo apt-get install i2c-tools
e Enable I°C support in the kernel using the raspi-config utility
sudo raspi-config

* In raspi-config, go to advanced options and select enable I1°C
This should set up I?C on the Raspberry Pi automatically
Afterwards reboot the Raspberry Pi

sudo reboot
e Test that the I°C works with the following command
sudo i2cdetect -y 1 (or sudo i2cdetect -y 0 on older models)
This command will show which devices are at which addresses on the I°C bus

If the steps above didn't successfully enable I°C, check that everything is set correctly by
following these steps:

¢ Edit the module files
sudo nano /etc/modules

e Add the following lines at the end if they aren't there already

i2c-bcm2708
i2c-dev

e Save the files

e Edit the blacklist file
sudo nano /etc/modprobe.d/raspi-blacklist.conf

* And remove I°C from the blacklist
comment it out by putting a # in front of the line

#tblacklist i2c-bcm2708

Kernals past 3.18 need to enable I°C in the device tree
sudo nano /boot/config.tx

Add the following lines at the end of the file if they aren't there already
dtparam=i2c1=on (or dtparam=i2cO=on on older models)
dtparam=i2c_arm=on

Section 2

Sample code

#!/usr/bin/python

import io # used to create file streams
import fentl # used to access I°C parameters like addresses

import time # used for sleep delay and timestamps
import string # helps parse strings

class atlas_i2c:
long_timeout = 1.5 # the timeout needed to query readings and calibrations
short_timeout = .3 # timeout for regular commands
default_bus = 1 # the default bus for I12C on the newer Raspberry Pis, certain older
boards use bus 0
default_address = 99 # the default address for the pH sensor

def __init_ (self, address = default_address, bus = default_bus):
open two file streams, one for reading and one for writing
the specific I1°C channel is selected with bus
it is usually 1, except for older revisions where its 0
wb and rb indicate binary read and write
self.file_read = io.open("/dev/i2c-"+str(bus), "rb", buffering = 0)
self.file_write = io.open("/dev/i2c-"+str(bus), "wb", buffering = 0)

initializes I12C to either a user specified or default address
self.set_i2c_address(address)

def set_i2c_address(self, addr):
set the I2°C communications to the slave specified by the address
The commands for I12C dev using the ioctl functions are specified in
the i2c-dev.h file from i2c-tools
|I2C_SLAVE = 0x703
fentl.ioctl(self.file_read, 12C_SLAVE, addr)
fentl.ioctl(self.file_write, 12C_SLAVE, addr)

def write(self, string):
appends the null character and sends the string over 1°C
string += "\00"
self.file_write.write(string)

def read(self, num_of_bytes = 31):
reads a specified number of bytes from I2C, then parses and displays the result
res = self.file_read.read(num_of_bytes) # read from the board
response = filter(lambda x: x I= "\x00', res) # remove the null characters to get the
response
if(ord(response[0]) == 1): # if the response isnt an error
char_list = map(lambda x: chr(ord(x) & ~0x80), list(response[1:])) # change MSB to
0 for all received characters except the first and get a list of characters
NOTE: having to change the MSB to 0 is a glitch in the raspberry pi, and you
shouldn't have to do this!
return "Command succeeded " + ".join(char_list) # convert the char list to a string
and returns it
else:
return "Error " + str(ord(response[0]))

def query(self, string):
write a command to the board, wait the correct timeout, and read the response
self.write(string)

the read and calibration commands require a longer timeout

if((string.upper().startswith("R")) or
(string.upper().startswith("CAL"))):
time.sleep(self.long_timeout)

else:
time.sleep(self.short_timeout)

return self.read()

def close(self):
self.file_read.close()
self.file_write.close()

def main():
device = atlas_i2¢c() # creates the I12C port object, specify the address or bus if
necessary
print(’
print(
print(’
(
(
(

>> Atlas Scientific sample code")

>> Any commands entered are passed to the board via [2C except:")

>> Address,xx changes the 12C address the Raspberry Pi communicates with.")
print(">> Poll,xx.x command continuously polls the board every xx.x seconds")

print(" where xx.x is longer than the %0.2f second timeout." % atlas_i2c.long_timeout)
print(" Pressing ctrl-c will stop the polling")

main loop
while True:
input = raw_input("Enter command: ")

address command lets you change which address the Raspberry Pi will poll
if(input.upper().startswith("ADDRESS")):

addr = int(string.split(input, ',")[1])

device.set_i2c_address(addr)

print("12C address set to " + str(addr))

contiuous polling command automatically polls the board
elif(input.upper().startswith("POLL")):
delaytime = float(string.split(input, *,")[1])

check for polling time being too short, change it to the minimum timeout
if too short
if(delaytime < atlas_i2c.long_timeout):
print("Polling time is shorter than timeout, setting polling time to %0.2f" %
atlas_i2c.long_timeout)
delaytime = atlas_i2c.long_timeout

get the information of the board you're polling

info = string.split(device.query("I"), ",")[1]

print("Polling %s sensor every %0.2f seconds, press ctrl-c to stop polling" % (info,
delaytime))

try:
while True:
print(device.query("R"))
time.sleep(delaytime - atlas_i2c.long_timeout)
except KeyboardInterrupt: # catches the ctrl-c command, which breaks the
loop above
print(" Continuous polling stopped")

if not a special keyword, pass commands straight to board
else:
print(device.query(input))

Click here to download the *.py file

Atlas-Scientific.com Copyright © Atlas Scientific LLC All Rights Reserved

http://www.atlas-scientific.com/_files/code/ino_files/rpi_i2c_sample_code.zip

