
Atlas-Scientific.com Copyright © Atlas Scientific LLC All Rights Reserved

RASPBERRY PI
If you have not set up I2C communications on your Raspberry Pi,
you will need to do this first (this only needs to be done once).

Click here to download the *.py file

TM

#!/usr/bin/python

import io # used to create file streams
import fcntl # used to access I2C parameters like addresses

import time # used for sleep delay and timestamps
import string # helps parse strings

class atlas_i2c:
 long_timeout = 1.5 # the timeout needed to query readings and calibrations
 short_timeout = .3 # timeout for regular commands
 default_bus = 1 # the default bus for I2C on the newer Raspberry Pis, certain older
boards use bus 0
 default_address = 99 # the default address for the pH sensor

 def __init__(self, address = default_address, bus = default_bus):
 # open two file streams, one for reading and one for writing
 # the specific I2C channel is selected with bus
 # it is usually 1, except for older revisions where its 0
 # wb and rb indicate binary read and write
 self.file_read = io.open("/dev/i2c-"+str(bus), "rb", buffering = 0)
 self.file_write = io.open("/dev/i2c-"+str(bus), "wb", buffering = 0)

 # initializes I2C to either a user specified or default address
 self.set_i2c_address(address)

 def set_i2c_address(self, addr):
 # set the I2C communications to the slave specified by the address
 # The commands for I2C dev using the ioctl functions are specified in
 # the i2c-dev.h file from i2c-tools
 I2C_SLAVE = 0x703
 fcntl.ioctl(self.file_read, I2C_SLAVE, addr)
 fcntl.ioctl(self.file_write, I2C_SLAVE, addr)

 def write(self, string):
 # appends the null character and sends the string over I2C
 string += "\00"
 self.file_write.write(string)

 def read(self, num_of_bytes = 31):
 # reads a specified number of bytes from I2C, then parses and displays the result
 res = self.file_read.read(num_of_bytes) # read from the board
 response = filter(lambda x: x != '\x00', res) # remove the null characters to get the
response
 if(ord(response[0]) == 1): # if the response isnt an error
 char_list = map(lambda x: chr(ord(x) & ~0x80), list(response[1:])) # change MSB to
0 for all received characters except the first and get a list of characters
 # NOTE: having to change the MSB to 0 is a glitch in the raspberry pi, and you
shouldn't have to do this!
 return "Command succeeded " + ''.join(char_list) # convert the char list to a string
and returns it
 else:
 return "Error " + str(ord(response[0]))

 def query(self, string):
 # write a command to the board, wait the correct timeout, and read the response
 self.write(string)

 # the read and calibration commands require a longer timeout
 if((string.upper().startswith("R")) or
 (string.upper().startswith("CAL"))):
 time.sleep(self.long_timeout)
 else:
 time.sleep(self.short_timeout)

 return self.read()

 def close(self):
 self.file_read.close()
 self.file_write.close()

def main():
 device = atlas_i2c() # creates the I2C port object, specify the address or bus if
necessary

 print(">> Atlas Scientific sample code")
 print(">> Any commands entered are passed to the board via I2C except:")
 print(">> Address,xx changes the I2C address the Raspberry Pi communicates with.")
 print(">> Poll,xx.x command continuously polls the board every xx.x seconds")
 print(" where xx.x is longer than the %0.2f second timeout." % atlas_i2c.long_timeout)
 print(" Pressing ctrl-c will stop the polling")

 # main loop
 while True:
 input = raw_input("Enter command: ")

 # address command lets you change which address the Raspberry Pi will poll
 if(input.upper().startswith("ADDRESS")):
 addr = int(string.split(input, ',')[1])
 device.set_i2c_address(addr)
 print("I2C address set to " + str(addr))

 # contiuous polling command automatically polls the board
 elif(input.upper().startswith("POLL")):
 delaytime = float(string.split(input, ',')[1])

 # check for polling time being too short, change it to the minimum timeout
if too short
 if(delaytime < atlas_i2c.long_timeout):

print("Polling time is shorter than timeout, setting polling time to %0.2f" %
atlas_i2c.long_timeout)

delaytime = atlas_i2c.long_timeout

 # get the information of the board you're polling
 info = string.split(device.query("I"), ",")[1]
 print("Polling %s sensor every %0.2f seconds, press ctrl-c to stop polling" % (info,
delaytime))

 try:
while True:

print(device.query("R"))
time.sleep(delaytime - atlas_i2c.long_timeout)

 except KeyboardInterrupt: # catches the ctrl-c command, which breaks the
loop above

print("Continuous polling stopped")

 # if not a special keyword, pass commands straight to board
 else:
 print(device.query(input))

if __name__ == '__main__':
 main()

Get I2C tools
• Download the I2C-tools utility by entering the following command in the terminal

sudo apt-get install i2c-tools

• Enable I2C support in the kernel using the raspi-config utility

sudo raspi-config

• In raspi-config, go to advanced options and select enable I2C
This should set up I2C on the Raspberry Pi automatically
Afterwards reboot the Raspberry Pi

sudo reboot

• Test that the I2C works with the following command

sudo i2cdetect -y 1 (or sudo i2cdetect -y 0 on older models)

This command will show which devices are at which addresses on the I2C bus

If the steps above didn't successfully enable I2C, check that everything is set correctly by
following these steps:

Section 1

Section 2

• Edit the module files

sudo nano /etc/modules

• Add the following lines at the end if they aren't there already

 i2c-bcm2708
 i2c-dev

• Save the files

• Edit the blacklist file
sudo nano /etc/modprobe.d/raspi-blacklist.conf

• And remove I2C from the blacklist
comment it out by putting a # in front of the line

#blacklist i2c-bcm2708

Kernals past 3.18 need to enable I2C in the device tree
sudo nano /boot/config.tx

Add the following lines at the end of the file if they aren't there already
dtparam=i2c1=on (or dtparam=i2c0=on on older models)

 dtparam=i2c_arm=on

Sample code

Raspberry Pi I2C Sample Code
V 0.8

http://www.atlas-scientific.com/_files/code/ino_files/rpi_i2c_sample_code.zip

