```c
void setup(){
  Serial.begin(9600);
  delay(1000);
  //hardware initialization.
  //enable I2C.
  Wire.begin/address(0x98);
  //a flag to signal when data has been received from the pc/mac/other.
  //we need to know how many characters have been received.
  serial_event=0;
  computerdata[20]=0;
}

void loop(){
  switch (Serial.parseInt()){ //the main loop.
    case 0:
      break;
    case 1:
      time_=300;
      break;
    case 254:
      break;
    default:
      Serial.println("No Data");
      break;
  }

  if (Serial.available()){
    in_char=Serial.parseInt();
    if (in_char==0){
      ORP_data[i]= in_char;
      i+=1;
    }
    while(Wire.available()){
      Wire.write(computerdata);
      Wire.beginTransmission(address);
      Wire.requestFrom(address,20,1);
      serial_event=1;
      for (received_from_computer=0; received_from_computer<20; received_from_computer++){
        computerdata[received_from_computer]=Wire.parseInt();
      }
      Wire.endTransmission();
      if (received_from_computer==20){
        ORP_float=atof(ORP_data);
        if (ORP_float>0)
          Serial.println("ORP value has been received");
        else
          Serial.println("No ORP value received");
      }
    }
  }
}
```

This code will output data to the Arduino serial monitor. Type commands into the Arduino serial monitor to control the EZO ORP Circuit in I2C mode.

Code efficiency was not considered. Modify this code as you see fit.