LG01 LoRa Gateway User Manual

Document Version: 1.0

Firmware Version: IoT Mesh v3.4.0

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Initiate</td>
<td>2016-Oct-29</td>
</tr>
<tr>
<td>1.0</td>
<td>Release, Add ThingSpeak Examples</td>
<td>2016-Dec-9</td>
</tr>
</tbody>
</table>
Index:

1 Introduction ... 4
 1.1 Overview .. 4
 1.2 What is LG01 ... 4
 1.3 Specifications ... 4
 1.4 Features .. 6
 1.5 System Structure .. 6
 1.6 Applications ... 7
 1.7 Hardware Variants .. 8

2 Quick Start Guide .. 9
 2.1 Access and config LG01 .. 9
 2.2 Program microcontroller .. 10
 2.2.1 Download and configure Arduino IDE .. 10
 2.2.2 Upload a sketch in the MCU ... 12
 2.3 Simple LoRa wireless example ... 14
 2.3.1 Installing LoRa Library .. 14
 2.3.2 Upload LoRa Server Sketch ... 15
 2.3.3 Upload LoRa Client Sketch ... 15

3 Typical Network Setup ... 16
 3.1 Overview .. 16
 3.2 General WiFi AP Network .. 17
 3.3 WAN Port Internet Mode ... 18
 3.4 WiFi Client Mode .. 18
 3.5 Mesh WiFi Network ... 19
 3.5.1 Mesh Gateway Set Up .. 19
 3.5.2 Mesh Client Set Up .. 21
 3.6 USB Dial Up Modem Set Up ... 23
 3.7 USB 3G/4G Ethernet Dongle .. 24

4 Linux System .. 25
 4.1 SSH Access for Linux console .. 25
 4.2 Edit and Transfer files ... 26
 4.3 File System .. 26
 4.4 Package maintain system .. 27

5 Bridge Library ... 28

6 Advance Management ... 29
 6.1 Reset Network or Reset to Factory Default ... 29

7 Upgrade Firmware ... 30
 7.1 Upgrade via Web UI ... 30
 7.2 Upgrade via Linux console .. 30
8 Auto-Provisioning ... 31
9 Advance Examples .. 31
 9.1 Upstream: Get data from LoRa node and send to IoT server 31
 9.1.1 Set up hardware ... 31
 9.1.2 Set up IoT Server account ... 31
 9.1.3 Upload sketches ... 32
 9.1.4 Check Result ... 32
 9.2 Downstream: Get data from IoT Server and send to LoRa node 33
 9.2.1 Set up Hardware ... 33
 9.2.2 Set up talkback command .. 33
 9.2.3 Upload sketches ... 34
 9.2.4 Check Result ... 34
 9.3 Multiple Nodes examples ... 35
 9.4 How to use the sensor pin of LG01-S? ... 36
 9.5 More Examples .. 38
10 FAQ .. 39
 10.1 Why there is 433/868/915 version LoRa part? .. 39
 10.2 What is the frequency range of LG01 LoRa part? 39
 10.3 What kind of LoRa devices can the gateway support? 39
 10.4 How many nodes can the LG01 support? .. 39
 10.5 What kind of Server the LG01 can support? ... 39
 10.6 Can I make my own firmware for LG01? Where can I find the source code of LG01? ... 40
 10.7 How to get more examples for this device? ... 40
11 Trouble Shooting .. 41
 11.1 I can’t download the Dragino profile in Arduino IDE 41
 11.2 Bridge between MCU and Linux module doesn’t work 42
 11.3 Arduino IDE doesn’t detect LG01 ... 42
 11.4 I get kernel error when install new package, how to fix? 42
 11.5 How to recover the LG01 if firmware crash ... 43
12 Order Info .. 44
13 Packing Info .. 44
14 Support ... 44
15 Reference .. 46
1 Introduction

1.1 Overview

1.2 What is LG01

The LG01 is an open source single channel LoRa Gateway. It lets you bridge LoRa wireless network to an IP network base on WiFi, Ethernet, 3G or 4G cellular. LG01 runs on open source embedded Linux system; it has USB host port and has full Ethernet and 802.11 b/g/n WiFi capabilities. The USB host port can be used to connect cellular modules so LG01 is very flexible to bridge LoRa Network to different kinds of network to fit user’s requirement.

1.3 Specifications

Hardware System:

Linux Part:
- 400Mhz ar9331 processor
- 64MB RAM
- 16MB Flash

MCU Part:
- MCU: ATMega328P
- Flash: 32KB
- SRAM: 2KB
- EEPROM: 1KB

Interface:
- Power Input: 9 ~ 24v DC
- 2 x RJ45 ports
- USB 2.0 Host port x 1
- Internal USB 2.0 Host Interface x 1
WiFi Spec:
- IEEE 802.11 b/g/n
- Frequency Band: 2.4 ~ 2.462GHz
- Tx power:
 - 11n tx power: mcs7/15: 11db, mcs0: 17db
 - 11b tx power: 18db
 - 11g 54M tx power: 12db
 - 11g 6M tx power: 18db
- Wifi Sensitivity
 - 11g 54M: -71dbm
 - 11n 20M: -67dbm

LoRa Spec:
- Frequency Range:
 - Band 1 (HF): 862 ~ 1020 Mhz
 - Band 2 (LF): 410 ~ 528 Mhz
 - Band 3 (LF): 137 ~ 175 Mhz
- 168 dB maximum link budget.
- +20 dBm - 100 mW constant RF output vs.
- +14 dBm high efficiency PA.
- Programmable bit rate up to 300 kbps.
- High sensitivity: down to -148 dBm.
- Bullet-proof front end: IIP3 = -12.5 dBm.
- Excellent blocking immunity.
- Low RX current of 10.3 mA, 200 nA register retention.
- Fully integrated synthesizer with a resolution of 61 Hz.
- FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
- Built-in bit synchronizer for clock recovery.
- Preamble detection.
- 127 dB Dynamic Range RSSI.
- Automatic RF Sense and CAD with ultra-fast AFC.
- Packet engine up to 256 bytes with CRC.
- Built-in temperature sensor and low battery indicator.
1.4 Features

- Open source Linux (OpenWrt) inside. User can modify or compile the firmware with custom features and own brand.
- Low power consumption.
- Compatible with Arduino IDE 1.5.4 or later, user can program, debug or upload sketch to the MCU via Arduino IDE.
- Managed by Web GUI, SSH via LAN or WiFi.
- Software upgradable via network.
- Auto-Provisioning.
- Built-in web server.
- Support internet connection via LAN port, WiFi or 3G /4G dongle.
- Failsafe design provides robustly system.

1.5 System Structure

LG01 System Overview:
1.6 Applications

Dragino Lora Gateway for IoT Applications

- Smart farm
- Outdoor monitoring
- Intelligent plant
- Intelligent Community
- Cloud computation
- Smart home
- Smart medical
- Intelligent transport
1.7 Hardware Variants
There are different LG01 variants for different applications. Below table shows the difference between these models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Photo</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LG01-P</td>
<td></td>
<td>The most general version can be used as a LoRa Gateway.</td>
</tr>
<tr>
<td>LG01-S</td>
<td></td>
<td>Include screw terminal which can connect to external sensors</td>
</tr>
<tr>
<td>OLG01</td>
<td></td>
<td>Our door version, this version doesn’t include LoRa antenna, instead, it has a SMA connector, user can connect it to a high gain LoRa antenna. It can be powered by a passive PoE adapter.</td>
</tr>
</tbody>
</table>
2 Quick Start Guide

2.1 Access and config LG01
The LG01 is configured as a WiFi AP by factory default. User can access and configure the LG01 after connect to its WiFi network.

At the first boot of LG01, it will auto generate an unsecure WiFi network call *dragino2-xxxxxx*

User can use the laptop to connect to this WiFi network. The laptop will get an IP address 10.130.1.xxx and the LG01 has the default IP *10.130.1.1*

Open a browser in the laptop and type 10.130.1.1
User will see the login interface of LG01.

The account for Web Login is:

- **User Name:** root
- **Password:** dragino
2.2 Program microcontroller.
The MCU (microcontroller) M328P is used to communicate with LoRa Radio part and Dragino Linux module. The program language for the MCU is based on C and program tool is Arduino IDE. Below the way shows how to do program it.

2.2.1 Download and configure Arduino IDE
➢ Download the latest Arduino Software (IDE) from Arduino official site:
https://www.arduino.cc/en/Main/Software
Install the IDE in the PC, open it and click File --> Preference, add below URL
http://www.dragino.com/downloads/downloads/YunShield/package_dragino_yun_test_index.js
on in the Additional Boards Manager URLs.

➢ Go to tools --> Boards --> Boards Manager, find Dragino boards info and install it.
After install Dragino’s board info in the IDE, we can see the boards info from the IDE, as below screenshot. For LG01, we should choose: Arduino Uno – Dragino Yun.

Note: If user has trouble to install via Board Manager. User can manually add the board profile.
2.2.2 Upload a sketch in the MCU

For the very start, we can try to upload a simple sketch to the MCU and see how it works.

- Make sure your computer and the LG01 is in the same network, if you already connect to the LG01 WiFi SSID, then both devices are in the same WiFi network. In the IDE, select the correct port as below screenshot.

- Select the example from IDE --> File --> Examples --> Dragino --> Basic --> Blink

Click Upload to upload the sketch to LG01, the LG01 may ask you password to upload, if so, type the password of LG01.
Check result

The blink sketch will set the A2 pin of the MCU to periodically high and low. This pin connects to the HEART LED of the LG01. So if successfully upload this sketch, user can see the HEART LED turn on and turn off periodically.
2.3 Simple LoRa wireless example

To test LoRa wireless, we at least need 2 devices support LoRa. In this example we will use below devices:

- LoRa Server: LG01; LoRa Client: LoRa Shield + Arduino Uno

Or

- LoRa Server: LG01; LoRa Client: LG01

Above two combination will shows the same LoRa feature, we provide different devices examples in LoRa Client which is for user convenient only.

2.3.1 Installing LoRa Library

The Library used here is Radiohead Library, Which can be download from http://www.airspayce.com/mikem/arduino/RadioHead/RadioHead-1.63.zip. unzip it and put it in the Arduino Library Folder. Reference: [Installing Library in Arduino](#)
2.3.2 Upload LoRa Server Sketch

Select the example from:

IDE --> File --> Examples --> Dragino --> LoRa --> LoRa_Simple_Server_Yun

Upload this Sketch to the LG01, then open the serial monitor to monitor the LG01 status, as below screenshot.

![Serial Monitor of LG01](image)

2.3.3 Upload LoRa Client Sketch

For LoRa Shield + Arduino as LoRa Client:

Select the example from:

IDE --> File --> Examples --> Dragino --> LoRa --> LoRa_Simple_Client_Arduino

Upload it to Arduino board, and open the serial monitor, you will get as below screenshot.

![Serial Monitor of Arduino](image)

For another LG01 as LoRa Client:

Method is same as above, but the example sketch is:

IDE --> File --> Examples --> Dragino --> LoRa --> LoRa_Simple_Client_Yun
3 Typical Network Setup

3.1 Overview
LG01 supports flexible network setups for different environments. This section describes the typical network topology that can be set in LG01. The typical network setup includes:

- WAN Port Internet Mode
- WiFi Client Mode
- WiFi AP Mode
- Mesh WiFi Network
- USB Dial Up Mode
- USB Ethernet Mode

Before setting network parameters, users can set up the Display Net Connection under Web --> Network --> Internet Access for easily checking network status. LG01 will check the network connection to the host and show the status in GLOBAL LED. The GLOBAL LED will blink if LG01 has network connection to that host.

The network settings are under the network section, in the following section of this chapter, we will show how to configure the LG01 for typical network usage.
3.2 General WiFi AP Network

In the General AP Mode, LG01 gets internet access from its WAN port or USB 3G/4G/GPRS. LG01 itself acts as a WiFi Access Point and provide a WiFi AP network. LG01 shares the internet to its AP network or LAN interface. Diagram is as below:

Set Up in Web UI for General WiFi AP mode

Network --> Internet Access:
✓ Access Internet via WAN PORT or USB Modem

Network --> LAN and DHCP
✓ Enable DHCP server in its LAN port

Network --> Access Point
✓ Enable WiFi AP
✓ Input SSID/ Encryption/ Passphrase

Network --> Mesh Network:
✓ Disable WiFi Mesh Network
3.3 **WAN Port Internet Mode**
The LG01 will use WAN port for internet connection. When connect LG01’s WAN port to router, LG01 will get IP from router and have internet access. This is the default setting. It also shares the internet to its LAN port and WiFi AP network for other devices.

3.4 **WiFi Client Mode**
In the WiFi Client Mode, Dragino acts as a WiFi client and gets DHCP from uplink router via WiFi. It also shares the internet to its LAN port for other devices.

Set Up in Web UI

Network --> Internet Access:
- Access Internet via WiFi Client
- Way to Get IP: DHCP
- Input correct SSID, Password and Encryption.

Network --> LAN and DHCP
- Enable DHCP server in its LAN port

Network --> Access Point
- Disable WiFi AP

Network --> Mesh Network
- Disable WiFi Mesh Network
3.5 Mesh WiFi Network

In the mesh network topology, user should choose the device to be a mesh gateway node or mesh client node.

Mesh Gateway: use WAN port or USB 3G/4G modem to get internet access from uplink router. It also shares the internet to its Mesh Network for other Mesh Clients. The Mesh Gateway also acts as a DHCP router for its mesh network.

Mesh Client: Connects to the Mesh Gateway via mesh network, it also bridge internet via the LAN and WiFi AP interface.

3.5.1 Mesh Gateway Set Up

Network --> Internet Access

Access Internet via WAN PORT or USB Modem

A Typical Mesh Network
Use WAN for internet access.

![Network Diagram]

Small Enterprise-Campus Network

<table>
<thead>
<tr>
<th>Internet Access</th>
<th>Access Internet Via</th>
<th>Way to Get IP</th>
<th>Display Net Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WAN Port</td>
<td>DHCP</td>
<td>www.163.com</td>
</tr>
</tbody>
</table>

✔ Select Internet Connection Method for mesh gateway
Network --> LAN and DHCP

- Enable DHCP server in its LAN port
- Set Gateway to 255.255.255.255

Network --> Access Point

- Enable WiFi AP (not necessary), Can set same SSID in the mesh network

Network --> Mesh Network

- Enable WiFi Mesh Network
- Input Mesh Group //Note: Mesh Device within same group can communicate with each other. Mesh Group is a translation for BSSID for easy configure and remember.
3.5.2 Mesh Client Set Up

Network --> Internet Access

- Access Internet set to Disable

Small Enterprise-Campus Network

Internet Access

Access Internet Via: Disable

Display Net Connection: Domain or IP

LAN and DHCP

- Disable DHCP server in its LAN port and
- Set gateway point to mesh gateway.

Small Enterprise-Campus Network

IP Address: 10.130.1.2

Enable DHCP:

Enable DHCP Server:

LAN Gateway: 10.130.1.1

Set a unique IP address for its LAN and WiFi interface.

Enable Fallback IP:

Fallback IP is permanent IP in LAN port, active after reboot.
Network --> Access Point

- Enable WiFi AP (not necessary, can use same SSID or different SSID with other mesh node)

Small Enterprise-Campus Network

Access Point

- **Enable WiFi AP**
 - Station ID: `dragino2-best-mesh`
 - Encryption: WPA2
 - Passphrase: `*********

Network --> Mesh Network

- Enable WiFi Mesh Network
- Input Mesh Group //Note: Mesh Device within same group can communicate with each other. Mesh Group is a translation for BSSID for easy configure and remember.

Small Enterprise-Campus Network

Mesh Setting

Mesh devices with the same group ID and AP wifi channel can communicate with each other

- **Enable Mesh**
 - **Group ID**: 10000
 - **Input a number between 1 ~ 109961167775**
3.6 USB Dial Up Modem Set Up
Dragino USB interface can be used for GPRS/3G/4G connections. Below are some set up examples.

WCDMA set up example:

![WCDMA Modem Setting](image)

3G EV-DO/CDMA2000 Set Up Example for China Telecom:

![3G Modem Setting](image)
3.7 USB 3G/4G Ethernet Dongle

Some USB dongles are not using the dial up to connect internet. Instead, they appear as a network interface and has built-in router feature. Huawei Hilink dongles are a typical of these. When user plug such dongle into computer, it will auto connect to Internet and redirect to a web interface, when plug such dongle into the MS14, a new interface will appear (typically eth2eth2 or usb0) by running command “ifconfig -a”.

User can use the Web UI to configure use these dongle for internet connection directly.
4 Linux System
The LG01 bases on OpenWrt Linux System. It is open source, and user are free to configure and modify the inside Linux settings.

4.1 SSH Access for Linux console
User can access to the Linux console via SSH protocol. Make sure your PC and the LG01 is in the same network, then use a SSH tool (such as putty) to access it. Below are screenshots:

IP address: IP address of LG01
Port: 22
User Name: root
Password: dragino (default)

After log in, you will be in the Linux console and type command here.
4.2 Edit and Transfer files
The LG01 support SCP protocol and has a built SFTP server. There are many ways to edit and transfer files using these two protocols. One of the easiest is through WinSCP utility. After access via WinSCP to the device, use can use a FTP alike window to drag / drop files to the LG01 or Edit the files directly in the windows. Screenshot is as below:

![Screenshot of WinSCP utility](image1)

4.3 File System
The LG01 has a 16MB flash and a 64MB RAM. The /var and /tmp directory are in the RAM, that means content in /tmp and /var will be erase after reboot the device. Other directories are in the flash and will keep after reboot.

The Linux system use around 8MB ~10MB flash size which means there is not much room for user to store data in the LG01 flash. User can use an external USB flash to extend the size for storage.
4.4 Package maintain system

LG01 uses Opkg package maintain system. There are more than 3000+ packages available in our package server for user to install for their applications. For example, if user wants to add MQTT support, they can install the related packages and configure LG01 to support MQTT.

Below is some examples opkg command, more please refer Opkg package maintain system.

In Linux Console run:

```
root@dragino-169d30:~# opkg update // to get the latest packages list
root@dragino-169d30:~# opkg list // shows the available packages
root@dragino-169d30:~# opkg install mosquitto-client // install MQTT client, it will auto install the required packages.
```

```
installing mosquitto-client (1.3.5-1) to root...
```

```
Downloading
http://downloads.openwrt.org/barrier_breaker/14.07/ar71xx/generic/packages/packages/mosquitto-client_1.3.5-1_ar71xx.ipk.
```

```
installing libcares (1.10.0-1) to root...
```

```
Downloading
```

```
installing libmosquitto (1.3.5-1) to root...
```

```
Downloading
http://downloads.openwrt.org/barrier_breaker/14.07/ar71xx/generic/packages/packages/libmosquitto_1.3.5-1_ar71xx.ipk.
```

```
Configuring libcares.
```

```
Configuring libmosquitto.
```

```
Configuring mosquitto-client.
```
5 Bridge Library

The bridge library is the most important part of LG01. Bridge library defines a mechanism how the MCU talk to the CPU (ar9331). With the bridge library, the MCU can send data to CPU, get commands result from CPU or call commands in CPU.

The bridge Library use UART port to communicate between MCU and ar9331. Below is the block diagram shows the bridge connection between the Mega328P MCU and Linux.

![LG01 Bridge Connection](image)

Detail instruction of how to use the bridge library can be found in [Arduino Bridge Library](#). Due to hardware difference, there are some points when we read and use the Bridge Examples from Arduino site:

- We recommend user to tried the examples under Arduino IDE --> Files --> Examples --> Dragino first.
- When use the Bridge class, user need to call Bridge.begin(115200) in the sketch for LG01.
- In the default bridge examples from Arudino IDE, it uses Serial class to print debug info. This doesn’t work in LG01. Because the Serial Class will call Mega328P's hardware serial port, it will be conflict with the Bridge Library. If user needs to print debug info, please use the console class.
6 Advance Management

6.1 Reset Network or Reset to Factory Default

LG01 provide ways for user to reset the device. When the Linux system is running, user can press the toggle button to reset the device. The pressing time will determine which part is to be reset.

- Pressing the toggle button, the **GLOBAL LED** will blink, release the button after 5 seconds, device will reset the network setting and reboot (**GLOBAL/LAN/WAN/WiFi** blink once), other settings will be kept.
- Pressing the toggle button, the **GLOBAL LED** will blink, release the button after 30 seconds, device will reset ALL the setting to factory default and reboot (**GLOBAL/LAN/WAN/WiFi** blink once).
7 Upgrade Firmware

We keep improving the LG01 Linux side firmware for new features, bug fixes. The latest firmware can be found on IoT Mesh Firmware, and the Change Log can be found here: Firmware Change Log.

The file named as dragino2-IoT--xxxxx-squashfs-sysupgrade.bin is the upgrade Image. There are different method to upgrade, as below:

7.1 Upgrade via Web UI

Go to the page: Web --> System --> Back Up and flash firmware, Select the image and click Flash Image, the image will be uploaded to the device and then click Process Update to upgrade.

System will auto boot to the new firmware after upgrade.

7.2 Upgrade via Linux console

SCP the firmware to the system /var directory and then run

```
root@OpenWrt:~# /sbin/sysupgrade -n /var/Your_Image
```

note: it is important to transfer the image in the /var directory, otherwise it may exceed the flash size.
8 Auto-Provisioning
9 Advance Examples

9.1 Upstream: Get data from LoRa node and send to IoT server

9.1.1 Set up hardware
Set up the hardware as below, the LoRa node will get sensor data from DHT11 and send these data to LoRa Gateway, when the Gateway get the data, it will pass the data to the IoT server.

9.1.2 Set up IoT Server account
We choose ThingSpeak as the IoT server here, first sign up an account in ThingSpeak, then goto the Channels and create a Channel with Temperature and Humidity field.

After create the channel, user can see the Channel ID and API key in the Channel Page. They are needed for upgrade data to this channel.
9.1.3 Upload sketches

Step 1: Download the ThingSpeak Library and put it in the Arduino library directory.

Step 2: Select the example from:

IDE --> File --> Examples --> Dragino --> IoTServer --> ThingSpeak --> dht11_client
And upload this sketch to the LoRa Node

Step 3: Select the example from

IDE --> File --> Examples --> Dragino --> IoTServer --> ThingSpeak --> dht11_server
Replace the myChannelNumber & myWriteAPIKey to your info
And upload this sketch to the LoRa Gateway.

9.1.4 Check Result

Check Result in ThingSpeak as below

![Channel Stats](image-url)
9.2 Downstream: Get data from IoT Server and send to LoRa node

9.2.1 Set up Hardware
Set up the hardware as below, the LoRa Gateway will get command from IoT Server and then send the command to LoRa node, the node control the relay state according to the receive command.

9.2.2 Set up talkback command
Create a talkback command in ThingSpeak Apps. We can then find the talkback ID and talkback API key here:
9.2.3 Upload sketches
Step 1: Select the example from:

IDE --> File --> Examples --> Dragino --> IoTServer --> ThingSpeak --> DownstreamClient
And upload this sketch to the LoRa Node

Step 2: Select the example from
IDE --> File --> Examples --> Dragino --> IoTServer --> ThingSpeak --> DownstreamServer
Replace the talkback ID & talkbackAPIKey with your info
And upload this sketch to the LoRa Gateway.

9.2.4 Check Result
In the talkback APP page, send a command 1 or 0 to trigger the relay. You can see the result from the console.
9.3 Multiple Nodes examples

The example shows how the gateway can handle multiple nodes up to several hundreds. The example can be found at IDE --> File --> Examples --> Dragino --> LoRa --> Concurrent

How it works:

This concurrent client sketch is working together with the concurrent gateway sketch. Before using this sketch, please use the write_client_id sketch to write a client ID in the EEPROM. Client ID is the unique id for each client in the LoRa network. write_gateway_id to gateway is not necessary, if not write, gateway id will be 0xFF.

- When the client boot, it will keep listening for the broadcast message from LoRa Gateway.
- When the gateway sketch boot, it will broadcast a message to set up a LoRa Network. If it gets broadcast message, client will send a join request message to gateway, when the join request message arrive to gateway, the gateway will send back a join-ack message with client id and add this client to the LoRa Network.
- If the client gets its join-ack message for its join request, it will enter the mode to listen the data-request message from gateway. In this mode, if client get a data-request message for this client it will send back a data message to the gateway.
- After client in data_request listening mode, if it has not receive any message from gateway in a timeout, it will go back to the network set up mode to listen the broadcast message.
- Gateway will refresh the LoRa network periodically for adding new client or remove unreachable client.

This example using the polling method between LoRa node and Gateway, it will minimize the LoRa packets transfer on the air and avoid congestion. It is suitable for a not real time LoRa work.

Performance test in a room with 100 nodes and 1 gateway shows:
- Gateway require about 1.5 minutes to set up this 100 nodes Network
- Gateway takes about 2 minutes to do polling for these 100 nodes.

User can adjust the timing in the sketch from case by case.
9.4 How to use the sensor pin of LG01-S?

The LG01-S has the external sensor pins from the Mega328P MCU, it can connect to external sensor, below is the pin definition for LG01-S:

![LG01-S Pinout](image)

LG01-S Pinout

The program method for these pins are the same as Arduino, what should notice is that the pins are 3.3v I/O base.

Here is an example for how to use it with DS18B20 temperature sensor.

Hardware Setup as below:

![Hardware Setup](image)

Source code is in this link:

- Sensor and LoRa client side
- Gateway side

Result screen shot:
LoRa Gateway Log Window shows the temperature got from the LoRa Client.
9.5 More Examples

Dragino keep updating examples in our wiki, more examples please refer the link:
Dragino Examples Catalog
10 FAQ

10.1 Why there is 433/868/915 version LoRa part?
Different country has different rules for the ISM band for using the LoRa. Although the LoRa chip can support a wide range of Frequency, we provide different version for best tune in the LoRa part. That is why we provide different version of LoRa.

10.2 What is the frequency range of LG01 LoRa part?
The chip used in the LoRa part is:

<table>
<thead>
<tr>
<th>Version</th>
<th>LoRa IC</th>
<th>Support Frequency</th>
<th>Best Tune Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>433</td>
<td>Semtech SX1278</td>
<td>Band2(LF): 410 ~525Mhz</td>
<td>433Mhz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Band3(LF): 137 ~175Mhz</td>
<td></td>
</tr>
<tr>
<td>868</td>
<td>Semtech SX1276</td>
<td>Band1(HF): 862 ~1020Mhz</td>
<td>868Mhz</td>
</tr>
<tr>
<td>915</td>
<td>Semtech SX1276</td>
<td>Band1(HF): 862 ~1020Mhz</td>
<td>915Mhz</td>
</tr>
</tbody>
</table>

User can set the LoRa within above frequency range in the software.

10.3 What kind of LoRa devices can the gateway support?
The LoRa part software is running in the Mega328P MCU. And we use the Radiohead Library as examples. If other LoRa devices are running the same Radiohead library, same frequency and same encryption, they should be able to communicate with this gateway.

User can also run other LoRa protocol on the MCU to support other LoRa devices they want.

10.4 How many nodes can the LG01 support?
The maximum support end-node depends on how the communication (how often) between the end-nodes and gateway. In a lab testing using the simple LoRa example, if the end nodes try to send data to the gateway at every 5 minutes, there will be data lost after the network has 20~30 nodes due to Channel Collision.
If user want to reach more nodes, user can consider using the polling method to ensure that each time will only have a LoRa signal transmit in the frequency. If the gateway uses polling method to get data from the end node, it can support several hundred nodes or more. Examples can see: Polling example for LoRa.

10.5 What kind of Server the LG01 can support?
The Linux side of LG01 is OpenWrt, it is open source and users can develop application over it. Basically it can support most IoT servers if use the right API. We have examples for how to connect some servers via typical protocol (MQTT,RESTful) for IoT, MQTT or RESTful. From this link: IoT Server Examples.
10.6 Can I make my own firmware for LG01? Where can I find the source code of LG01?
Yes, User can make own firmware for LG01 for branding purpose or add customized application.
The LG01 source code and compile instruction can be found at:
https://github.com/dragino/openwrt-bb-1407

10.7 How to get more examples for this device?
We keep releasing Arduino Examples in the Dragino examples directory under Arduino IDE. If user install the dragino board earlier and we have release new examples. The new ones won’t show up in the IDE except the user update the board profile. To update, User can remove the board profile in Arduino board manager and install it again.
11 Trouble Shooting

11.1 I can’t download the Dragino profile in Arduino IDE.

If IDE quite slowly while downloading the Dragino profile in board manager and stuck somewhere. As show below, it is because your network has slow connection to some packages from Arduino IDE.

To solve this, user can manually add Dragino profile. Below is the step:

1/ Download the profile from https://github.com/dragino/Arduino-Profile-Examples
2/ Unzip it and put the content under this directory:

C:\Users\xxx\AppData\Local\Arduino15\packages\Dragino\hardware\avr\0.1.0

Note: Different system may have different directory for Arduino15, if you can’t see Dragino\hardware\avr\0.1.0, just create it in your Arduino15 directory.

The final directory content should as below.
11.2 Bridge between MCU and Linux module doesn’t work.
Some possibilities:
1/ You have used the Serial class in MCU sketch, like Serial.begin(9600), The bridge library in Mega328P use the same Serial interface. So if you have the Serial code in the sketch. They will conflict and bridge doesn’t work.
2/ The IDE get mess in the serial setting when you compile other sketch. In this case, you can close the IDE and open it again.

11.3 Arduino IDE doesn’t detect LG01
Check below points if this issue happens:
✓ The Arduino IDE version is 1.5.4 or later
✓ Your PC and Yun LG01 are in the same network.
✓ Try to access the LG01 via Web or SSH, then check the IDE again.
✓ If above still doesn’t work, SSH log in the LG01 and run: /etc/init.d/avahi-daemon restart to restart the service so IDE can detect the LG01.

11.4 I get kernel error when install new package, how to fix?
In some case, when install package, it will generate kernel error such as below:
```
root@dragino-16c538:~# opkg install kmod-dragino2-si3217x_3.10.49+0.2-1_ar71xx.ipk
Installing kmod-dragino2-si3217x (3.10.49+0.2-1) to root...
Collected errors:
* satisfy_dependencies_for: Cannot satisfy the following dependencies for kmod-dragino2-si3217x:
  * kernel (= 3.10.49-1-4917516478a753314254643facdf360a) *
  * opkg_install_cmd: Cannot install package kmod-dragino2-si3217x.
```
In this case, user can use the –force-depends option to install such package.
```
opkg install kmod-dragino2-si3217x_3.10.49+0.2-1_ar71xx.ipk --force-depends
```
11.5 How to recover the LG01 if firmware crash

LG01 provide user a full control on its Linux system, it is possible that the device will brick and can’t boot after improper modification in some booting files.

In this case, user can recover the whole Linux system by uploading a new firmware via Web Failsafe mode.

Procedure is as below:
- Use a RJ45 cable to connect the PC to LG01’s port directly.
- Set the PC to ip 192.168.255.x, netmask 255.255.255.0
- Pressing the toggle button and power on the device
- All LEDs of the device will blink, release the toggle button after four blinks
- All LEDs will then blink very fast once, this means device detect a network connection and enter into the web-failsafe mode. Your PC should be able to ping 192.168.255.1 after device enter this mode.
- Open 192.168.255.1 in web browser
- Select a squashfs-sysupgrade type firmware and update firmware.

![Firmware update](image)
12 Order Info

General Version:
- **LG01P-433:** LoRa Gateway best tune to 433 MHz.
- **LG01P-868:** LoRa Gateway best tuned to 868 MHz.
- **LG01P-915:** LoRa Gateway best tuned to 915 MHz

Screw Terminal Version:
- **LG01S-433:** LoRa Gateway best tune to 433 MHz.
- **LG01S-868:** LoRa Gateway best tuned to 868 MHz.
- **LG01S-915:** LoRa Gateway best tuned to 915 MHz

Outdoor Version:
- **OLG01-433:** LoRa Gateway best tune to 433 MHz.
- **OLG01-868:** LoRa Gateway best tuned to 868 MHz.
- **OLG01-915:** LoRa Gateway best tuned to 915 MHz

13 Packing Info

Package Includes:
- LG01P or LG01S LoRa Gateway x 1
- Stick Antenna for LoRa RF part. Frequency is one of 433 or 868 or 915Mhz depends the model ordered
- Power Adapter: EU/AU/US type power adapter depends on country to be used
- Packaging with environmental protection paper box

Dimension and weight:
- Device Size: 12 x 8.5 x 3 cm
- Device Weight: 150g
- Package Size / pcs : 21.5 x 10 x 5 cm
- Weight / pcs : 360g
- Carton dimension: 45 x 31 x 34 cm. 36pcs per carton
- Weight / carton : 12.5 kg

14 Support
- Try to see if your questions already answered in the wiki.
- Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
- Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to support@dragino.com
15 Reference

- LG01 LoRa Gateway official wiki
- More examples for LG01 LoRa Gateway
- Source code for LG01 LoRa Gateway
 https://github.com/dragino/openwrt-bb-1407
- OpenWrt official Wiki
 http://www.openwrt.org/
- Arduino Official Site:
 https://www.arduino.cc
- Arduino bridge examples:
 https://www.arduino.cc/en/Tutorial/Bridge