
Atlas-Scientific.com Copyright © Atlas Scientific LLC All Rights Reserved

//**THIS CODE WILL WORK ON ANY ARDUINO**
//This code has intentionally has been written to be overly lengthy and includes unnecessary steps.
//Many parts of this code can be truncated. This code was written to be easy to understand.
//Code efficiency was not considered. Modify this code as you see fit.
//This code will output data to the Arduino serial monitor. Type commands into the Arduino serial monitor to control the EZO EC Circuit in I2C mode.

Click here to download the *.ino file

char computerdata[20];
byte received_from_computer = 0;
bool serial_event = false;
byte code = 0;
char ec_data[48];
byte in_char = 0;
byte i = 0;
int delay_time = 1400;

char *ec;
char *tds;
char *sal;
char *sg;

float ec_float;
float tds_float;
float sal_float;
float sg_float;

//we make a 20 byte character array to hold incoming data from a pc/mac/other.
//we need to know how many characters have been received.
//a flag to signal when data has been received from the pc/mac/other.
//used to hold the I2C response code.
//we make a 48 byte character array to hold incoming data from the EC circuit.
//used as a 1 byte buffer to store in bound bytes from the EC Circuit.
//counter used for ec_data array.
//used to change the delay needed depending on the command sent to the EZO Class EC Circuit.

//char pointer used in string parsing.
//char pointer used in string parsing.
//char pointer used in string parsing.
//char pointer used in string parsing.

//float var used to hold the float value of the conductivity.
//float var used to hold the float value of the TDS.
//float var used to hold the float value of the salinity.
//float var used to hold the float value of the specific gravity.

//enable I2C.
//default I2C ID number for EZO EC Circuit.

#include <Wire.h>
#define address 100

//hardware initialization.

//enable serial port.
//enable I2C port.

void setup()
{
 Serial.begin(9600);
 Wire.begin();
}

//the main loop.
//if a command was sent to the EC circuit.

//we need to check each character in the array.
//if a character in the array is uppercase we change it to lowercase.

 //reset the counter i to 0.

void loop() {
 if (serial_event == true) {

 for (i = 0; i < received_from_computer; i++) {
 computerdata[i] = tolower(computerdata[i]);
 }

 i = 0;

//if a command has been sent to calibrate or take a
//reading we wait 1400ms so that the circuit has enough
//time to take the reading.
//if any other command has been sent we wait only 300ms.

//call the circuit by its ID number.
//transmit the command that was sent through the serial port.
//end the I2C data transmission.

 if (computerdata[0] == 'c' || computerdata[0] == 'r')delay_time = 1400;
 else delay_time = 300;

 Wire.beginTransmission(address);
 Wire.write(computerdata);
 Wire.endTransmission();

//wait the correct amount of time for the circuit to complete its instruction.
//call the circuit and request 48 bytes (this is more than we need)
//the first byte is the response code, we read this separately.

 delay(delay_time);
 Wire.requestFrom(address, 48, 1);
 code = Wire.read();

//are there bytes to receive.
//receive a byte.
//load this byte into our array.
//incur the counter for the array element.
//if we see that we have been sent a null command.
//reset the counter i to 0.
//end the I2C data transmission.
//exit the while loop.

 while (Wire.available()) {
 in_char = Wire.read();
 ec_data[i] = in_char;
 i += 1;
 if (in_char == 0) {
 i = 0;
 Wire.endTransmission();
 break;
 }
 }

//are there bytes to receive.
//receive a byte.
//load this byte into our array.
//incur the counter for the array element.
//if we see that we have been sent a null command.
//reset the counter i to 0.
//end the I2C data transmission.
//exit the while loop.

 while (Wire.available()) {
 in_char = Wire.read();
 ec_data[i] = in_char;
 i += 1;
 if (in_char == 0) {
 i = 0;
 Wire.endTransmission();
 break;
 }
 }

//switch case based on what the response code is.
//decimal 1.
//means the command was successful.
//exits the switch case.

//decimal 2.
//means the command has failed.
//exits the switch case.

//decimal 254.
//means the command has not yet been finished calculating.
//exits the switch case.

//decimal 255.
//means there is no further data to send.
//exits the switch case.

 switch (code) {
 case 1:
 Serial.println("Success");
 break;

 case 2:
 Serial.println("Failed");
 break;

 case 254:
 Serial.println("Pending");
 break;

 case 255:
 Serial.println("No Data");
 break;
 }

//print the data.

//reset the serial event flag.

 Serial.println(ec_data);
 }
 serial_event = false;

//this function will break up the CSV string into its 4 individual parts.
//EC|TDS|SAL|SG.
//this is done using the C command “strtok”.

//let's pars the string at each comma.
//let's pars the string at each comma.
//let's pars the string at each comma.
//let's pars the string at each comma.

//we now print each value we parsed separately.

//this is the EC value.

//we now print each value we parsed separately.
//this is the TDS value.

//we now print each value we parsed separately.
//this is the salinity value.

//we now print each value we parsed separately.
//this is the specific gravity.

void string_pars() {

 ec = strtok(ec_data, ",");
 tds = strtok(NULL, ",");
 sal = strtok(NULL, ",");
 sg = strtok(NULL, ",");

 Serial.print("EC:");

 Serial.println(ec);

 Serial.print("TDS:");
 Serial.println(tds);

 Serial.print("SAL:");
 Serial.println(sal);

 Serial.print("SG:");
 Serial.println(sg);

 //uncomment this section if you want to take the values and convert them into floating point number.
 /*
 ec_float=atof(ec);
 tds_float=atof(tds);
 sal_float=atof(sal);
 sg_float=atof(sg);
 */
}

 //if(computerdata[0]=='r') string_pars();

 }
}

//uncomment this function if you would like to break up the comma
//separated string into its individual parts.

//this interrupt will trigger when the data coming from
//the serial monitor(pc/mac/other) is received.
//we read the data sent from the serial monitor
//(pc/mac/other) until we see a <CR>. We also count
//how many characters have been received.
//stop the buffer from transmitting leftovers or garbage.
//set the serial event flag.

void serialEvent() {
 received_from_computer = Serial.readBytesUntil(13, computerdata, 20);
 computerdata[received_from_computer] = 0;
 serial_event = true;
}

//if the command that has been sent is NOT the sleep command,
//wait the correct amount of time and request data.
//if it is the sleep command, we do nothing. Issuing a sleep command
//and then requesting data will wake the EC circuit.

 if (strcmp(computerdata, "sleep") != 0) {

center

sheild

BNC

Arduino MEGA
www. arduino.cc

AR
EF

G
N

D
13 12 11 10

9 8 7 6 5 4 3 2

T
X

1

R
X

0

0 1 2 3 4 5 6 7R
ES

ET
3V

3

8 9 10 11 12 13 14 15

22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52

31
33
35
37
39
41
43
45
47
49
51
53

TX
3

14
R

X3
 1

5
TX

2
16

R
X2

 1
7

TX
1

18
R

X1
 1

9
SD

A
20

SC
L

21

PWM

PWR

D
IG

IT
AL

ANALOG IN

COMMUNICATION

5V GND GNDVIN

I CSP

1

center

sheild

BNC

AR
EF

G
N

D

R
ES

ET
3V

3
PW

M
PW

M
PW

M

L

TX
RX

USB

EXT

PW
R

SE
L

PWR

ICSP

PW
M

PW
M

PW
M

TX R
X

3
1

2
1

1
1

0
1

9 8
DIGITAL

7 6 5 4 3 2 1 0

1

5V Gnd
POWER

www.arduino.cc

ANALOG IN
Vin 0 1 2 3 4 5

Arduino

I2C
Conductivity Sample Code

TM

https://www.atlas-scientific.com/_files/code/ino_files/EC_I2C.zip

