MQ303B Alcohol Sensor

Character
- High sensitivity
- Fast response and resume
- Long life and low cost
- Mini Size

Application
MQ303B is a semiconductor sensor for Alcohol detection. It has good sensitivity and fast response to alcohol, suitable for portable alcohol detector.

Technical Data

<table>
<thead>
<tr>
<th>Character</th>
<th>Model No.</th>
<th>MQ303B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor Type</td>
<td>Semiconductor</td>
<td></td>
</tr>
<tr>
<td>Standard Encapsulation</td>
<td>Metal</td>
<td></td>
</tr>
<tr>
<td>Detection Gas</td>
<td>Alcohol</td>
<td></td>
</tr>
<tr>
<td>Concentration</td>
<td>20-1000 ppm Alcohol</td>
<td></td>
</tr>
<tr>
<td>Standard Circuit Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater Voltage</td>
<td>V_H</td>
<td>0.9V ± 0.1V AC or DC</td>
</tr>
<tr>
<td>Loop Voltage</td>
<td>V_c</td>
<td>≤6V DC</td>
</tr>
<tr>
<td>Load Resistance</td>
<td>R_L</td>
<td>Adjustable</td>
</tr>
<tr>
<td>Heater Resistance</td>
<td>R_H</td>
<td>$4.5\Omega ± 0.5\Omega$ (Room Temp.)</td>
</tr>
<tr>
<td>Heater Current</td>
<td>I_H</td>
<td>120±20mA</td>
</tr>
<tr>
<td>Heater Power</td>
<td>P_H</td>
<td>≤ 140 mW</td>
</tr>
<tr>
<td>Sensor Consumption</td>
<td></td>
<td>P_S ≤10 mW</td>
</tr>
<tr>
<td>Sensing Resistance</td>
<td>R_s</td>
<td>4KΩ~400KΩ (in air)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>S</td>
<td>Rs(in air)/Rs(125ppm Alcohol)</td>
</tr>
<tr>
<td>Slope</td>
<td>α</td>
<td>$0.50 ± 0.15 (R_{pre} / R_{post} Alcohol)$</td>
</tr>
<tr>
<td>Condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>20°C±2°C</td>
<td>65%±5%RH</td>
</tr>
<tr>
<td>Standard test circuit</td>
<td>V_c: 3.0 V±0.1 V DC ; V_H: 0.9 V±0.1 V DC</td>
<td></td>
</tr>
<tr>
<td>Preheat time</td>
<td>Over 48 hours</td>
<td></td>
</tr>
</tbody>
</table>

The sensing element is a micro-ball, heater and metal electrode are inside, and the sensing element is installed in an anti-explosion double 100 mesh metal case (see the above)
Sensitivity Characteristics

![Fig 2: Standard Test Circuit](image)

Fig.2 is the test circuit. You could get resistance change from voltage change on fixed or adjustable load resistance. Normally, it will take several minutes preheating for sensor enter into stable working after electrified; or you could give 2.2±0.2V high voltage for 5-10secs before test, which make sensor easily stable.

Influence of Temperature/Humidity

![Fig 3: Sensitivity](image)

Fig 3 is sensitivity of MQ303B, it reflects relations between resistance and gas concentration, resistance of the sensor reduce when gas concentration increases.

Notification

1 Following conditions must be prohibited

1.1 Exposed to organic silicon steam

 Organic silicon steam cause sensors invalid, sensors must be avoid exposing to silicon bond, fixture, silicon latex, putty or plastic contain silicon environment

1.2 High Corrosive gas

 If the sensors exposed to high concentration corrosive gas (such as H₂Sz, SOₓ, Cl₂, HCl etc), it will not only result in corrosion of sensors structure, also it cause sincere sensitivity attenuation.

1.3 Alkali, Alkali metals salt, halogen pollution

 The sensors performance will be changed badly if sensors be sprayed polluted by alkali metals salt especially brine, or be exposed to halogen such as fluorin.

1.4 Touch water

 Sensitivity of the sensors will be reduced when spattered or dipped in water.

1.5 Freezing

 Do avoid icing on sensor’s surface, otherwise sensor would lose sensitivity.

1.6 Applied voltage higher

 Applied voltage on sensor should not be higher than stipulated value, otherwise it cause down-line or heater damaged, and bring on sensors’ sensitivity characteristic changed badly.

1.7 Voltage on wrong pins

 For 6 pins sensor, if apply voltage on 1, 3 pins or 4, 6 pins, it will make lead broken, and without signal when apply on 2, 4 pins

2 Following conditions must be avoided

2.1 Water Condensation
Indoor conditions, slight water condensation will effect sensors performance lightly. However, if water condensation on sensors surface and keep a certain period, sensor’ sensitivity will be decreased.

2.2 Used in high gas concentration
No matter the sensor is electrified or not, if long time placed in high gas concentration, if will affect sensors characteristic.

2.3 Long time storage
The sensors resistance produce reversible drift if it’s stored for long time without electrify, this drift is related with storage conditions. Sensors should be stored in airproof without silicon gel bag with clean air. For the sensors with long time storage but no electrify, they need long aging time for stability before using.

2.4 Long time exposed to adverse environment
No matter the sensors electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc, it will effect the sensors performance badly.

2.5 Vibration
Continual vibration will result in sensors down-lead response then rupture. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.

2.6 Concussion
If sensors meet strong concussion, it may lead its lead wire disconnected.

2.7 Usage
For sensor, handmade welding is optimal way. If use wave crest welding should meet the following conditions:

2.7.1 Soldering flux: Rosin soldering flux contains least chlorine
2.7.2 Speed: 1-2 Meter/ Minute
2.7.3 Warm-up temperature: 100±20℃
2.7.4 Welding temperature: 250±10℃
2.7.5 1 time pass wave crest welding machine
If disobey the above using terms, sensors sensitivity will be reduced.